Random Forest for Automatic Feature Importance Estimation and Selection for Explainable Postural Stability of a Multi-Factor Clinical Test

Author:

Mendoza Tomas,Lee Chia-Hsuan,Huang Chien-Hua,Sun Tien-LungORCID

Abstract

Falling is a common incident that affects the health of elder adults worldwide. Postural instability is one of the major contributors to this problem. In this study, we propose a supplementary method for measuring postural stability that reduces doctor intervention. We used simple clinical tests, including the timed-up and go test (TUG), short form berg balance scale (SFBBS), and short portable mental status questionnaire (SPMSQ) to measure different factors related to postural stability that have been found to increase the risk of falling. We attached an inertial sensor to the lower back of a group of elderly subjects while they performed the TUG test, providing us with a tri-axial acceleration signal, which we used to extract a set of features, including multi-scale entropy (MSE), permutation entropy (PE), and statistical features. Using the score for each clinical test, we classified our participants into fallers or non-fallers in order to (1) compare the features calculated from the inertial sensor data, and (2) compare the screening capabilities of the multifactor clinical test against each individual test. We use random forest to select features and classify subjects across all scenarios. The results show that the combination of MSE and statistic features overall provide the best classification results. Meanwhile, PE is not an important feature in any scenario in our study. In addition, a t-test shows that the multifactor test of TUG and BBS is a better classifier of subjects in this study.

Funder

Ministry of Science,Technology and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postural Sway Classification using Modified Vision Transformer;2023 IEEE Biomedical Circuits and Systems Conference (BioCAS);2023-10-19

2. Brain tumor detection using random forest algorithm in comparison with k-nearest neighbors algorithm to measure the accuracy, precision and recall;AIP Conference Proceedings;2023

3. Inertial sensor-based movement classification with dimension reduction based on feature aggregation;2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo);2022-11-21

4. Machine learning algorithms for integrating clinical features to predict intracranial hemorrhage in patients with acute leukemia;International Journal of Neuroscience;2022-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3