Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays

Author:

Zumaquero Silvero EulaliaORCID,Gilabert Albiol JessicaORCID,Díaz-Canales Eva María,Ventura Vaquer María Jesús,Gómez-Tena María Pilar

Abstract

Mineralogical characterization of clays used in manufacturing of traditional ceramic products is critical for guarantee the quality of the final product, but also for assessing the environmental impact of the industrial process in terms of atmospheric emissions. In fact, the presence of impurities even in low-level concentrations can have a big impact. So, it is very important to carry out an accurate mineral quantification of those minerals which are related to carbon dioxide and acid emissions (hydrogen fluoride, hydrogen chloride or sulfur dioxide). The development of hyphenated techniques coupling thermal analysis equipment with mass spectrometry and Fourier-transform infrared spectroscopy provides more valuable information and lower limit quantification than other primary techniques, such as X-ray diffraction or infrared spectroscopy. The main objective of this work is to develop an analytical procedure using evolved gas analysis to identify and quantify minerals such as chlorides, sulfides, carbonaceous materials and minor clay minerals. In addition to this, the study includes the analysis of acid emissions during the ceramic firing treatment even if they are present at low quantitative levels. This methodology was applied to reference materials so that it allows the identification of sulfur, chlorine, fluorine and carbonaceous compounds in concentrations lower than 1%.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference29 articles.

1. Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques (BATs) in the Ceramic Manufacturing Industry,2007

2. Genesis and Morphology of Iron Sulfides in Gray Kaolins

3. Caracterización de las emisiones de contaminantes ácidos en la fabricación de baldosas cerámicas

4. Acid emissions monitoring needs in ceramic tile industry: Challenges derived from new policy trends;Celades;E3S Web Conf.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3