A Geospatial Database for Effective Mine Rehabilitation in Australia

Author:

Werner TimORCID,Bach PeterORCID,Yellishetty MohanORCID,Amirpoorsaeed Fatemeh,Walsh Stuart,Miller AlecORCID,Roach Matthew,Schnapp Andrew,Solly Philippa,Tan Youming,Lewis Chloe,Hudson Ehren,Heberling Kim,Richards Thomas,Chia Han,Truong Melissa,Gupta Tushar,Wu Xiaoling

Abstract

The Australian landscape is affected by abandoned mines that pose environmental, public health and safety risks. To promote the beneficial reuse, rehabilitation and/or remediation of these sites and understand their spatial arrangement, we compiled, classified and analysed a country-wide geospatial database of all known inactive hard rock mine sites. Following extensive review and classification of disparate records of such sites that have been terminated, neglected or classified as heritage, plus those under care and maintenance in Australia, we assessed state-by-state reporting and cross-border rehabilitation requirements. This was enabled by the development of the Mining Incidence Documentation & Assessment Scheme (MIDAS) that can be used to catalogue and compare active or inactive mine data regardless of reporting conventions. At a national level, and with four case studies, we performed GIS-based spatial analyses and environmental risk assessments to demonstrate potential uses of our database. Analyses considered the proximity of sites to factors such as infrastructure and sensitive environmental receptors. As Australia struggles to manage the ongoing technical, socioeconomic and environmental challenges of effective mine rehabilitation, the insights enabled by this national-level spatial database may be key to developing coordinated responses that extend beyond state boundaries. Our classification and methodology are easily transferable, thereby encouraging more formalized, systematic and widespread documentation of abandoned mines worldwide.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3