Quantitative X-ray µCT Measurement of the Effect of Ore Characteristics on Non-Surface Mineral Grain Leaching

Author:

Ghadiri MahdiORCID,Harrison Susan T.L.ORCID,Fagan-Endres Marijke A.ORCID

Abstract

In heap (bio)leaching processes, a substantial fraction of the valuable mineral is positioned below the ore particle surface. X-ray micro-computed tomography (μCT) was used to quantify the effect of ore type and structure and operating temperature on the leaching of this mineral, to investigate the rate-controlling factors. Mini-leaching columns containing agglomerated chalcopyrite, pyrite, and malachite ores were scanned by X-ray μCT (13.40 µm resolution) at select time intervals. The leaching of a relatively porous malachite ore was reaction-controlled, with no leaching penetration limitation into the ore particles. For two less porous ore types, the structure and higher porosity of the agglomerate rim and conditions that resulted in the degradation of the full ore matrix structure were found to be the determining variables of the leaching extent and time. In the case of a chalcopyrite ore, an enhancement of copper recovery and sulphide mineral dissolution with increasing temperature was attributable to the increased leaching penetration distance and crack development in addition to thermodynamically expected increased leaching rate. Increasing temperature did not affect the maximum penetration distance for the waste rock containing pyrite, with no crack development observed. Overall increases in iron recovery were due to accelerated leaching rates, though diffusion or mineral access limitations were evident at a higher temperature.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3