Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests

Author:

Liepiņš JānisORCID,Lazdiņš AndisORCID,Kalēja Santa,Liepiņš KasparsORCID

Abstract

Various tree species contribute differently to total biomass stock, making the development of species-specific stand-level equations critical for better estimation of forest biomass and quantification of carbon stocks. Previously derived dry weight biomass models did not assess the effect of dominant species composition according to stand growing stock. Growing stock definitions and forest species composition differ by country, justifying the need for national stand-level biomass equations. We explored the relationship between growing stock volume and stand biomass density of above- and below-ground components in six common forest categories in Latvia using plot-level data from the National Forest Inventory from 2016 to 2020. Additionally, we explored model dependence on region, forest type, and species composition index. Models that considered growing stock and dominant species composition index performed better than models with growing stock as the only variable, especially for heterogeneous deciduous forests with greater species diversity. The elaborated models are a useful alternative to individual-level assessment for estimating forest biomass stocks in circumstances where individual tree data are not available.

Funder

Eurepoean Regional Development Fund

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3