Multi-Scenario Simulation of Land Use Changes with Ecosystem Service Value in the Yellow River Basin

Author:

Lou Yuanyuan,Yang Dan,Zhang Pengyan,Zhang Ying,Song Meiling,Huang Yicheng,Jing WenlongORCID

Abstract

Land use change plays a crucial role in global environmental change. Understanding the mode and land use change procedure is conducive to improving the quality of the global eco-environment and promoting the harmonized development of human–land relationships. Large river basins play an important role in areal socioeconomic development. The Yellow River Basin (YRB) is an important ecological protective screen, economic zone, and major grain producing area in China, which faces challenges with respect to ecological degradation and water and sediment management. Simulating the alterations in ecosystem service value (ESV) owing to land use change in the YRB under multiple scenarios is of great importance to guaranteeing the ecological security of the basin and improve the regional ESV. According to the land use data of 1990, 2000, 2010, and 2018, the alterations in the land use and ESV in the YRB over the past 30 years were calculated and analyzed on the basis of six land use types: cultivated land, forestland, grassland, water area, built-up land, and unused land. The patch-generating land use simulation (PLUS) model was used to simulate the land use change in the study area under three scenarios (natural development, cultivated land protection, and ecological protection in 2026); estimate the ESV under each scenario; and conduct a comparative analysis. We found that the land use area in the YRB changed significantly during the study period. The ESV of the YRB has slowly increased by ~USD 15 billion over the past 30 years. The ESV obtained under the ecological protection scenario is the highest. The simulation of the YRB’s future land use change, and comparison and analysis of the ESV under different scenarios, provide guidance and a scientific basis for promoting ecological conservation and high-quality development of river basins worldwide.

Funder

National Natural Science Foundation of China

Program for Innovative Research Talent in University of Henan Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3