Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically Weighted Regression

Author:

Sun Yuling,Jia Junsong,Ju Min,Chen ChundiORCID

Abstract

As China’s second largest energy-use sector, residential consumption has a great potential for carbon dioxide (CO2) reduction and energy saving or transition. Thus, here, using the methods of social network analysis (SNA) and geographically weighted regression (GWR), we investigated the spatiotemporal evolution characteristics of China’s residential CO2 emissions (RCEs) from direct energy use and proposed some policy suggestions for regional energy transition. (1) From 2000 to 2019, the total direct RCEs rose from 396.32 Mt to 1411.69 Mt; the consumption of electricity and coal were the primary sources. Controlling coal consumption and increasing the proportion of electricity generated from renewable energy should be the effective way of energy transition. (2) The spatial associations of direct RCEs show an obvious spatial network structure and the number of associations is increasing. Provinces with a higher level of economic development (Beijing, Shanghai, and Jiangsu) were at the center of the network and classified as the net beneficiary cluster in 2019. These provinces should be the priority areas of energy transition. (3) The net spillover cluster (Yunnan, Shanxi, Xinjiang, Gansu, Qinghai, Guizhou) is an important area to develop clean energy. People in this cluster should be encouraged to use more renewable energy. (4) GDP and per capita energy consumption had a significant positive influence on the growth of direct RCEs. Therefore, the national economy should grow healthily and sustainably to provide a favorable economic environment for energy transition. Meanwhile, residential consumption patterns should be greener to promote the use of clean energy.

Funder

Foundation Project of Philosophy and Social Science in Jiangxi Province; Research Project of Humanities and Social Science in Jiangxi’s Universities; Chinese National Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3