Evaluating Rutting Resistance of Rejuvenated Recycled Hot-Mix Asphalt Mixtures Using Different Types of Recycling Agents

Author:

Hashim Tameem Mohammed,Nasr Mohammed SalahORCID,Jebur Yasir MohammedORCID,Kadhim Abdullah,Alkhafaji Zainab,Baig Mirza Ghouse,Adekunle Saheed KolawoleORCID,Al-Osta Mohammed A.ORCID,Ahmad ShamsadORCID,Yaseen Zaher MundherORCID

Abstract

Growing environmental pollution worldwide is mostly caused by the accumulation of different types of liquid and solid wastes. Therefore, policies in developed countries seek to support the concept of waste recycling due to its significant impact on the environmental footprint. Hot-mix asphalt mixtures (HMA) with reclaimed asphalt pavement (RAP) have shown great performance under rutting. However, incorporating a high percentage of RAP (>25%) is a challenging issue due to the increased stiffness of the resulting mixture. The stiffness problem is resolved by employing different types of commercial and noncommercial rejuvenators. In this study, three types of noncommercial rejuvenators (waste cooking oil (WCO), waste engine oil (WEO), and date seed oil (DSO)) were used, in addition to one type of commercial rejuvenator. Three percentages of RAP (20%, 40%, and 60%) were utilized. Mixing proportions for the noncommercial additives were set as 0–10% for mixtures with 20% RAP, 12.5–17.5% for mixtures with 40% RAP, and 17.5–20% for mixtures with 60% RAP. In addition, mixing proportions for the commercial additive were set as 0.5–1.0% for mixtures with 20% RAP, 1.0–1.5% for mixtures with 40% RAP, and 1.5–2.0% for mixtures with 60% RAP. The rutting performance of the generated mixtures was indicated first by using the rutting index (G*/sin δ) for the combined binders and then evaluated using the Hamburg wheel-track test. The results showed that the rejuvenated mixtures with the commercial additive at 20 and 60% RAP performed well compared to the control mixture, whereas the rejuvenated ones at 40% RAP performed well with noncommercial additives in comparison to the control mixture. Furthermore, the optimum percentages for each type of the used additives were obtained, depending on their respective performance, as 10%, 12.5%, and 17.5% of WCO, 10%, 12.5–17.5%, and 17.5% of WEO, <10%, 12.5%, and 17.5% of DSO, and 0.5–1.0%, 1.0%, and 1.5–2.0% of the commercial rejuvenator, corresponding to the three adopted percentages of RAP.

Funder

l-Mustaqbal University College

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3