Synthesis of Silicon Nitride Nanoparticles by Upcycling Silicon Wafer Waste Using Thermal Plasma Jets

Author:

Kim Tae-HeeORCID,Lee Seungjun,Park Dong-Wha

Abstract

Silicon (Si) waste generation is a critical issue in the development of semiconductor industries, and significant amounts of Si waste are disposed via landfilling. Herein, we propose an effective and high value-added recycling method for generating nitride nanoparticles from Si waste, such as poor-grade Si wafers, broken wafers, and Si scrap with impurities. Si waste was crushed and used as precursors, and an Ar-N2 thermal plasma jet was applied at 13 kW (300 A) under atmospheric pressure conditions. A cone-type reactor was employed to optimize heat transfer, and Si waste was injected into the high-temperature region between the cathode and anode to react with free/split nitrogen species. Spherical Si3N4 nanoparticles were successfully synthesized using isolated nitrogen plasma in the absence of ammonia gas. The crystalline structure comprised mixed α- and β-Si3N4 phases with the particle size <30 nm. Furthermore, the influence of ammonia gas on nitridation was investigated. Our findings indicated that Si3N4 nanoparticles were successfully synthesized in the absence of ammonia gas, and their crystallinity could be altered based on the reactor geometry. Therefore, the as-proposed thermal plasma technique can be used to successfully synthesize high value-added nanopowder from industrial waste.

Funder

Wonkwang University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3