Abstract
Excellent gyromagnetic properties of textured, bulk Ba-hexaferrite samples are required for low-loss, self-biased applications for microwave and millimeter-wave (MMW) devices. However, conventionally processed bulk Ba-hexaferrite ceramics typically demonstrate low remanent magnetization values, 4πMr, of 2.0~3.0 kG, and relatively large ferromagnetic resonance (FMR) linewidths, ΔHFMR, of 0.8~2 kOe. These properties lead to the development of high-performance, practical devices. Herein, crystallographically textured Ba-hexaferrite samples, of the composition Ba0.8La0.2Fe11.8Cu0.2O19, having excellent functional properties, are proposed. These materials exhibit strong anisotropy fields, Ha, of ~14.6 kOe, high remanent magnetization, 4πMr, of 3.96 kGs, and a low ΔHFMR of 401 Oe at zero-bias field at the Q-band. Concomitantly, the broadband millimeter-wave transmittance was utilized to determine the complex permeability, μ*, and permittivity, ε*, of textured hexaferrites. Based on Schlöemann’s theory of complex permeability, μ*, the remanent magnetization, 4πMr, anisotropy field, Ha, and effective linewidth, ΔHeff, were estimated; these values agree well with measured values.
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Planning Project
Innovation Group Project of Sichuan Province
Science and Technology Bureau of Longquanyi District of Chengdu
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献