Programmable Thermo-Responsive Self-Morphing Structures Design and Performance

Author:

Pandeya Surya PrakashORCID,Zou ShengORCID,Roh Byeong-Min,Xiao Xinyi

Abstract

Additive manufacturing (AM), also known as 3D printing, was introduced to design complicated structures/geometries that overcome the manufacturability limitations of traditional manufacturing processes. However, like any other manufacturing technique, AM also has its limitations, such as the need of support structures for overhangs, long build time etc. To overcome these limitations of 3D printing, 4D printing was introduced, which utilizes smart materials and processes to create shapeshifting structures with the external stimuli, such as temperature, humidity, magnetism, etc. The state-of-the-art 4D printing technology focuses on the “form” of the 4D prints through the multi-material variability. However, the quantitative morphing analysis is largely absent in the existing literature on 4D printing. In this research, the inherited material anisotropic behaviors from the AM processes are utilized to drive the morphing behaviors. In addition, the quantitative morphing analysis is performed for designing and controlling the shapeshifting. A material–process–performance 4D printing prediction framework has been developed through a novel dual-way multi-dimensional machine learning model. The morphing evaluation metrics, bending angle and curvature, are obtained and archived at 99% and 93.5% R2, respectively. Based on the proposed method, the material and production time consumption can be reduced by around 65–90%, which justifies that the proposed method can re-imagine the digital–physical production cycle.

Funder

Department of Transportation, China

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. Process planning for five-axis support free additive manufacturing;Xiao;Addit. Manuf.,2020

2. Decomposition and Sequencing for a 5-Axis Hybrid Manufacturing Process;Xiao;Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference,2020

3. Xiao, X., and Xiao, H. (2021). Autonomous robotic feature-based freeform fabrication approach. Materials, 15.

4. 4D rods: 3D structures via programmable 1D composite rods;Ding;Mater. Des.,2018

5. Multi-material 3D and 4D printing: A survey;Rafiee;Adv. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3