Impregnation of Medium-Density Fiberboard Residues with Phase Change Materials for Efficient Thermal Energy Storage

Author:

Rodríguez Gustavo E.1,Bustos Ávila Cecilia1ORCID,Romero Romina2ORCID,Cloutier Alain3ORCID

Affiliation:

1. Centro de Biomateriales y Nanotecnología, Departmento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío Bío, Concepcion 4030000, Chile

2. Departamento de Química Analítica e Inorgánica, Universidad de Concepción, Concepcion 4030000, Chile

3. Renewable Materials Research Center (CRMR), Department of Wood and Forest Sciences, Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

The wood-based panel industry generates a significant amount of solid residues in its production activities, including medium-density fiberboard (MDF) molding manufacturing. These residues consist of fine fibers measuring between 0.15 mm and 1.19 mm in length. A large proportion of them currently needs to be utilized, mainly due to the problem of excessive accumulation. They can be reused as raw material for manufacturing new products by adopting a circular economy approach. Their thermal properties can also be enhanced by impregnating them with phase change materials (PCMs). This research aims to develop a process for impregnating MDF panel residues (R) with PCMs to obtain shape-stabilized compounds capable of storing thermal energy. Three different commercially available PCMs were used. They were incorporated in the MDF residues by vacuum impregnation. The morphology, chemical structure, thermal stability, and phase change properties of the compounds obtained were studied by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The SEM images indicated the PCM filled the empty spaces in the porous surface of the residue fibers to form shape-stabilized compounds. The FTIR spectrometry results indicated the compounds still exhibited characteristic peaks corresponding to both the MDF residues and the PCMs. No chemical reaction was observed between the two components. Moreover, according to the TGA results, the compounds produced exhibit high thermal stability. The R+PCM1 compound had the highest latent heat capacity of all the compounds developed in this study, reaching a maximum of 57.8 J⋅g−1, and a phase change temperature comparable to that of PCM1. This better thermal performance could be attributed to the compounds having a higher encapsulation ratio (31.4%) than the other compounds developed. Furthermore, the R+PCM1 compound had an absorption capacity of 142.8%. This study, therefore, unveiled a promising alternative for storing thermal energy and valorizing solid MDF residues.

Funder

Universidad del Bío Bío

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3