A Convolution Neural Network-Based Representative Spatio-Temporal Documents Classification for Big Text Data

Author:

Kim ByoungwookORCID,Yang Yeongwook,Park Ji SuORCID,Jang Hong-Jun

Abstract

With the proliferation of mobile devices, the amount of social media users and online news articles are rapidly increasing, and text information online is accumulating as big data. As spatio-temporal information becomes more important, research on extracting spatiotemporal information from online text data and utilizing it for event analysis is being actively conducted. However, if spatiotemporal information that does not describe the core subject of a document is extracted, it is rather difficult to guarantee the accuracy of core event analysis. Therefore, it is important to extract spatiotemporal information that describes the core topic of a document. In this study, spatio-temporal information describing the core topic of a document is defined as ‘representative spatio-temporal information’, and documents containing representative spatiotemporal information are defined as ‘representative spatio-temporal documents’. We proposed a character-level Convolution Neuron Network (CNN)-based document classifier to classify representative spatio-temporal documents. To train the proposed CNN model, 7400 training data were constructed for representative spatio-temporal documents. The experimental results show that the proposed CNN model outperforms traditional machine learning classifiers and existing CNN-based classifiers.

Funder

Korean Government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3