A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance

Author:

Ton That-DongORCID,Hsieh Min-FuORCID

Abstract

In this paper, a new deadbeat stator current and flux linkage vector control (DB-CFVC) scheme for interior permanent magnet synchronous machines (IPMSM) is proposed. The control structure is simplified by implementing the proposed flux linkage vector control method in the α-β stationary coordinate. Unlike conventional deadbeat methods, the dynamic performance of the proposed DB-CFVC can be enhanced while voltage command saturation and over output current are avoided. This is achieved with a “reinforced” phase angle reference of stator flux linkage vector by considering rotor speed error and maximum voltage to properly enhance the quality of the calculated flux phase angle command. By predicting stator flux linkage and current in the stationary coordinate, the deadbeat direct flux linkage vector control based on the one-step delay compensation strategy becomes straightforward and exhibits low sensitivity to motor parameters compared to conventional methods performed in the rotating frame. Then, by developing a practical and robust hybrid flux linkage observer, the proposed DB-CFVC method can work more reliably and effectively than conventional methods. Simulations and experiments are conducted in a drive system for an IPMSM to evaluate the effectiveness and reliability of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3