Abstract
Quality inspection is inevitable in the steel industry so there are already benchmark datasets for the visual inspection of steel surface defects. In our work, we show, contrary to previous recent articles, that a generic state-of-art deep neural network is capable of almost-perfect classification of defects of two popular benchmark datasets. However, in real-life applications new types of errors can always appear, thus incremental learning, based on very few example shots, is challenging. In our article, we address the problems of the low number of available shots of new classes, the catastrophic forgetting of known information when tuning for new artifacts, and the long training time required for re-training or fine-tuning existing models. In the proposed new architecture we combine EfficientNet deep neural networks with randomized classifiers to aim for an efficient solution for these demanding problems. The classification outperforms all other known approaches, with an accuracy 100% or almost 100%, on the two datasets with the off-the-shelf network. The proposed few-shot learning approach shows considerably higher accuracy at a low number of shots than the different methods under testing, while its speed is significantly (at least 10 times) higher than its competitors. According to these results, the classification and few-shot learning of steel surface defects can be solved more efficiently than was possible before.
Funder
Ministry for Innovation and Technology of Hungary from the National Research, 494 Development and Innovation Fund,
Hungarian Scientific Research Fund
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献