Abstract
Human activity recognition can help in elderly care by monitoring the physical activities of a subject and identifying a degradation in physical abilities. Vision-based approaches require setting up cameras in the environment, while most body-worn sensor approaches can be a burden on the elderly due to the need of wearing additional devices. Another solution consists in using smart glasses, a much less intrusive device that also leverages the fact that the elderly often already wear glasses. In this article, we propose UCA-EHAR, a novel dataset for human activity recognition using smart glasses. UCA-EHAR addresses the lack of usable data from smart glasses for human activity recognition purpose. The data are collected from a gyroscope, an accelerometer and a barometer embedded onto smart glasses with 20 subjects performing 8 different activities (STANDING, SITTING, WALKING, LYING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS, RUNNING, and DRINKING). Results of the classification task are provided using a residual neural network. Additionally, the neural network is quantized and deployed on the smart glasses using the open-source MicroAI framework in order to provide a live human activity recognition application based on our dataset. Power consumption is also analysed when performing live inference on the smart glasses’ microcontroller.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献