Determination of Morphogeometric Patterns in Individuals with Total Mandibular Edentulism in the Interforaminal Region from Cone Beam Computed Tomography (CBCT) Scans: A Pilot Study

Author:

Abarza Liliann,Acuña-Mardones PabloORCID,Sanzana-Luengo CristinaORCID,Beltrán VíctorORCID

Abstract

The aim of this study was to determine the morphogeometric patterns of the interforaminal region from cone beam computed tomography (CBCT) scans of individuals with total mandibular edentulism. CBCT images were obtained from 40 patients with total edentulism who are older (12 men and 28 women; average age of 69.5 ± 9.4 years) and who wore a non-implant-supported, lower, removable, total prosthesis. We conducted a two-dimensional (2D) morphogeometric analysis of the Digital Imaging and Communication in Medicine (DICOM) files from the CBCT scans, and five equidistant cross sections were planned. For the three-dimensional (3D) morphogeometric analysis, standard triangular language (STL) files were obtained after segmentation of the interforaminal mandibular region, and four anatomical landmarks and their respective curves were digitized. The patterns among the shapes were determined using principal component analysis (PCA) on MorphoJ software (version 1.07a). The results of the 2D morphogeometric analyses for PCA of the interforaminal mandibular paramedian region were PC1 or elongated drop shape, 54.78%; PC2 or wineskin shape, 17.65%; PC3 or pear shape, 11.77%; and PC4 or eggplant shape, 5.71%, and those for PCA of the symphyseal region were PC1 or elongated drop shape, 62.13%; PC2 or ovoid shape, 11.64%; PC3 or triangular shape, 9.71%; and PC4 or tuber shape, 4.96%. The results of the 3D morphogeometric analyses for the interforaminal hemimandibular region were PC1, 59.83%; PC2, 10.39%; PC3, 7.67%; and PC4, 5.09%. This study provides relevant information for future clinical guidelines on prosthetics and implants, in addition to proposing the use of new technologies that support diagnosis and treatment in patients with edentulism.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3