A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews

Author:

Singh Chetanpal,Imam TasadduqORCID,Wibowo SantosoORCID,Grandhi Srimannarayana

Abstract

User-generated multi-media content, such as images, text, videos, and speech, has recently become more popular on social media sites as a means for people to share their ideas and opinions. One of the most popular social media sites for providing public sentiment towards events that occurred during the COVID-19 period is Twitter. This is because Twitter posts are short and constantly being generated. This paper presents a deep learning approach for sentiment analysis of Twitter data related to COVID-19 reviews. The proposed algorithm is based on an LSTM-RNN-based network and enhanced featured weighting by attention layers. This algorithm uses an enhanced feature transformation framework via the attention mechanism. A total of four class labels (sad, joy, fear, and anger) from publicly available Twitter data posted in the Kaggle database were used in this study. Based on the use of attention layers with the existing LSTM-RNN approach, the proposed deep learning approach significantly improved the performance metrics, with an increase of 20% in accuracy and 10% to 12% in precision but only 12–13% in recall as compared with the current approaches. Out of a total of 179,108 COVID-19-related tweets, tweets with positive, neutral, and negative sentiments were found to account for 45%, 30%, and 25%, respectively. This shows that the proposed deep learning approach is efficient and practical and can be easily implemented for sentiment classification of COVID-19 reviews.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3