On the Safe Deployment of Matrix Multiplication in Massively Parallel Safety-Related Systems

Author:

Fernández JavierORCID,Perez-Cerrolaza JonORCID,Agirre IruneORCID,Calderon Alejandro J.ORCID,Abella JaumeORCID,Cazorla Francisco J.ORCID

Abstract

Deep learning technology has enabled the development of increasingly complex safety-related autonomous systems using high-performance computers, such as graphics processing units (GPUs), which provide the required high computing performance for the execution of parallel computing algorithms, such as matrix–matrix multiplications (a central computing element of deep learning software libraries). However, the safety certification of parallel computing software algorithms and GPU-based safety-related systems is a challenge to be addressed. For example, achieving the required fault-tolerance and diagnostic coverage for random hardware errors. This paper contributes with a safe matrix–matrix multiplication software implementation for GPUs with random hardware error-detection capabilities (permanent, transient) that can be used with different architectural patterns for fault-tolerance, and which serves as a foundation for the implementation of safe deep learning libraries for GPUs. The proposed contribution is complementary and can be combined with other techniques, such as algorithm-based fault tolerance. In particular, (i) we provide the high-performance matrix multiplication CUTLASS library with a catalog of diagnostic mechanisms to detect random hardware errors down to the arithmetic operation level; and (ii) we measure the performance impact incurred by the adoption of these mechanisms and their achievable diagnostic coverage with a set of representative matrix dimensions. To that end, we implement these algebraic operations, targeting CUDA cores with single instructions and multiple-thread math instructions in an NVIDIA Xavier NX GPU.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3