Experimental and Simulation Research on the Process of Nitrogen Migration and Transformation in the Fluctuation Zone of Groundwater Level

Author:

Li Yuepeng,Wang Liuyue,Zou Xun,Qu Jihong,Bai Gang

Abstract

The fluctuation of groundwater causes a change in the groundwater environment and then affects the migration and transformation of pollutants. To study the influence of water level fluctuations on nitrogen migration and transformation, physical experiments on the nitrogen migration and transformation process in the groundwater level fluctuation zone were carried out. A numerical model of nitrogen migration in the Vadose zone and the saturated zone was constructed by using the software HydrUS-1D. The correlation coefficient and the root mean square error of the model show that the model fits well. The numerical model is used to predict nitrogen migration and transformation in different water level fluctuation scenarios. The results show that, compared with the fluctuating physical experiment scenario, when the fluctuation range of the water level increases by 5 cm, the fluctuation range of the nitrogen concentration in the coarse sand, medium sand and fine sand media increases by 37.52%, 31.40% and 21.14%, respectively. Additionally, when the fluctuation range of the water level decreases by 5 cm, the fluctuation range of the nitrogen concentration in the coarse sand, medium sand and fine sand media decreases by 36.74%, 14.70% and 9.39%, respectively. The fluctuation of nitrogen concentration varies most significantly with the amplitude of water level fluctuations in coarse sand; the change in water level has the most significant impact on the flux of nitrate nitrogen and has little effect on the change in nitrite nitrogen and ammonium nitrogen, and the difference in fine sand is the most obvious, followed by medium sand, and the difference in coarse sand is not great.

Funder

The Doctoral Research Fund of North China University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3