Tree Based Approaches for Predicting Concrete Carbonation Coefficient

Author:

Londhe Shreenivas,Kulkarni Preeti,Dixit Pradnya,Silva AnaORCID,Neves RuiORCID,de Brito JorgeORCID

Abstract

Carbonation is one of the critical durability issues in reinforced concrete structures in terms of their structural integrity and safety and may cause the fatal deterioration and corrosion of steel reinforcement if ignored. Many researchers have performed a considerable number of studies to predict the carbonation of concrete structures. However, it is still challenging to predict the carbonation depth or carbonation coefficient, as they depend on various factors. Therefore, creating a model that can learn from available data using Data Driven Techniques (DDT) is a step forward in this research field. This study provides new approaches to predict the carbonation coefficient of concrete through Model Tree (MT), Random Forest (RF) and Multi-Gene Genetic Programming (MGGP) approaches. With 827 case studies, the predicted models can be seen as a function of a set of conditioning factors, which are statistically significant in explaining the carbonation mechanism. The results obtained through MT, RF and MGGP were compared with those obtained through Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs) and Genetic Programming (which were previously developed). The results reveal that the MT, RF and MGGP perform better than the previous models. Moreover, the MT technique displays its output in terms of series of equations, RF as multiple trees and MGGP in form of a single equation, which are more user-friendly and applicable in practice.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3