Abstract
Cavitation is a major concern in liquid rocket engine turbopumps, and as an effective measure to improve cavitation quality, an inducer with helical static blades has attracted attention in recent years. In order to study the effect of the radial height of helical static blades on the cavitation performance of the inducer, CFD methods based on the Reynolds-averaged N-S equation, the standard k-ε turbulent model, and the Schnerr and Sauer cavitation model are employed to analyze the cavitation flow characteristics of a certain inducer with different helical static blades. The results show that with the increase in radial height, the backflow in the flow field is enhanced. Affected by this situation, the head is improved, the efficiency is reduced, and the low-pressure zone on the suction surface at entrance is enlarged. The helical static blade can delay the channel blocking of cavitation by providing an extra channel for the extension of bubbles. However, the effectiveness is restricted because the cavitation area enlarges with the radial height of the helical static blade. Although the effect of radial height on the head and the cavitation performance is opposite, there is an optimal radial height from 0.05 to 0.125 that improves both at the same time.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献