Laser Cooling and Trapping of Rare-Earth-Doped Particles

Author:

Nemova Galina

Abstract

This review focuses on optical refrigeration with the anti-Stokes fluorescence of rare-earth (RE)-doped low-phonon micro- and nanocrystals. Contrary to bulk samples, where the thermal energy is contained in internal vibrational modes (phonons), the thermal energy of nanoparticles is contained in both the translational motion and internal vibrational (phonons) modes of the sample. Much theoretical and experimental research is currently devoted to the laser cooling of nanoparticles. In the majority of the related work, only the translational energy of the particles has been suppressed. In this review, the latest achievements in hybrid optical refrigeration of RE-doped low-phonon micro- and nanoparticles are presented. Hybrid cooling permits the suppression of not only the translational energy of the RE-doped particles, but also their internal vibrational phonon thermal energy. Laser cooling of nanoparticles is not a simple task. Mie resonances can be used to enhance laser cooling with the anti-Stokes fluorescence of nanoparticles made of low-phonon RE-doped solids. Laser-cooled nanoparticles is a promising tool for fundamental quantum-mechanical studies, nonequilibrium thermodynamics, and precision measurements of forces.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3