On the Black-Box Challenge for Fraud Detection Using Machine Learning (II): Nonlinear Analysis through Interpretable Autoencoders

Author:

Chaquet-Ulldemolins JacoboORCID,Gimeno-Blanes Francisco-JavierORCID,Moral-Rubio SantiagoORCID,Muñoz-Romero SergioORCID,Rojo-Álvarez José-LuisORCID

Abstract

Artificial intelligence (AI) has recently intensified in the global economy due to the great competence that it has demonstrated for analysis and modeling in many disciplines. This situation is accelerating the shift towards a more automated society, where these new techniques can be consolidated as a valid tool to face the difficult challenge of credit fraud detection (CFD). However, tight regulations do not make it easy for financial entities to comply with them while using modern techniques. From a methodological perspective, autoencoders have demonstrated their effectiveness in discovering nonlinear features across several problem domains. However, autoencoders are opaque and often seen as black boxes. In this work, we propose an interpretable and agnostic methodology for CFD. This type of approach allows a double advantage: on the one hand, it can be applied together with any machine learning (ML) technique, and on the other hand, it offers the necessary traceability between inputs and outputs, hence escaping from the black-box model. We first applied the state-of-the-art feature selection technique defined in the companion paper. Second, we proposed a novel technique, based on autoencoders, capable of evaluating the relationship among input and output of a sophisticated ML model for each and every one of the samples that are submitted to the analysis, through a single transaction-level explanation (STE) approach. This technique allows each instance to be analyzed individually by applying small fluctuations of the input space and evaluating how it is triggered in the output, thereby shedding light on the underlying dynamics of the model. Based on this, an individualized transaction ranking (ITR) can be formulated, leveraging on the contributions of each feature through STE. These rankings represent a close estimate of the most important features playing a role in the decision process. The results obtained in this work were consistent with previous published papers, and showed that certain features, such as living beyond means, lack or absence of transaction trail, and car loans, have strong influence on the model outcome. Additionally, this proposal using the latent space outperformed, in terms of accuracy, our previous results, which already improved prior published papers, by 5.5% and 1.5% for the datasets under study, from a baseline of 76% and 93%. The contribution of this paper is twofold, as far as a new outperforming CFD classification model is presented, and at the same time, we developed a novel methodology, applicable across classification techniques, that allows to breach black-box models, erasingthe dependencies and, eventually, undesirable biases. We conclude that it is possible to develop an effective, individualized, unbiased, and traceable ML technique, not only to comply with regulations, but also to be able to cope with transaction-level inquiries from clients and authorities.

Funder

Agencia Estatal de Investigación of Science and Innovation Ministry

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3