MuCHLoc: Indoor ZigBee Localization System Utilizing Inter-Channel Characteristics

Author:

Kimoto Ryota,Ishida ShigemiORCID,Yamamoto Takahiro,Tagashira Shigeaki,Fukuda Akira

Abstract

The deployment of a large-scale indoor sensor network faces a sensor localization problem because we need to manually locate significantly large numbers of sensors when Global Positioning System (GPS) is unavailable in an indoor environment. Fingerprinting localization is a popular indoor localization method relying on the received signal strength (RSS) of radio signals, which helps to solve the sensor localization problem. However, fingerprinting suffers from low accuracy because of an RSS instability, particularly in sensor localization, owing to low-power ZigBee modules used on sensor nodes. In this paper, we present MuCHLoc, a fingerprinting sensor localization system that improves the localization accuracy by utilizing channel diversity. The key idea of MuCHLoc is the extraction of channel diversity from the RSS of Wi-Fi access points (APs) measured on multiple ZigBee channels through fingerprinting localization. MuCHLoc overcomes the RSS instability by increasing the dimensions of the fingerprints using channel diversity. We conducted experiments collecting the RSS of Wi-Fi APs in a practical environment while switching the ZigBee channels, and evaluated the localization accuracy. The evaluations revealed that MuCHLoc improves the localization accuracy by approximately 15% compared to localization using a single channel. We also showed that MuCHLoc is effective in a dynamic radio environment where the radio propagation channel is unstable from the movement of objects including humans.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3