Evaluation of Decision Fusions for Classifying Karst Wetland Vegetation Using One-Class and Multi-Class CNN Models with High-Resolution UAV Images

Author:

Li Yuyang,Deng Tengfang,Fu BolinORCID,Lao Zhinan,Yang Wenlan,He Hongchang,Fan Donglin,He Wen,Yao Yuefeng

Abstract

Combining deep learning and UAV images to map wetland vegetation distribution has received increasing attention from researchers. However, it is difficult for one multi-classification convolutional neural network (CNN) model to meet the accuracy requirements for the overall classification of multi-object types. To resolve these issues, this paper combined three decision fusion methods (Majority Voting Fusion, Average Probability Fusion, and Optimal Selection Fusion) with four CNNs, including SegNet, PSPNet, DeepLabV3+, and RAUNet, to construct different fusion classification models (FCMs) for mapping wetland vegetations in Huixian Karst National Wetland Park, Guilin, south China. We further evaluated the effect of one-class and multi-class FCMs on wetland vegetation classification using ultra-high-resolution UAV images and compared the performance of one-class classification (OCC) and multi-class classification (MCC) models for karst wetland vegetation. The results highlight that (1) the use of additional multi-dimensional UAV datasets achieved better classification performance for karst wetland vegetation using CNN models. The OCC models produced better classification results than MCC models, and the accuracy (average of IoU) difference between the two model types was 3.24–10.97%. (2) The integration of DSM and texture features improved the performance of FCMs with an increase in accuracy (MIoU) from 0.67% to 8.23% when compared to RGB-based karst wetland vegetation classifications. (3) The PSPNet algorithm achieved the optimal pixel-based classification in the CNN-based FCMs, while the DeepLabV3+ algorithm produced the best attribute-based classification performance. (4) Three decision fusions all improved the identification ability for karst wetland vegetation compared to single CNN models, which achieved the highest IoUs of 81.93% and 98.42% for Eichhornia crassipes and Nelumbo nucifera, respectively. (5) One-class FCMs achieved higher classification accuracy for karst wetland vegetation than multi-class FCMs, and the highest improvement in the IoU for karst herbaceous plants reached 22.09%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3