On the Co-Selection of Vision Transformer Features and Images for Very High-Resolution Image Scene Classification

Author:

Chaib SouleymanORCID,Mansouri Dou El Kefel,Omara IbrahimORCID,Hagag AhmedORCID,Dhelim SahraouiORCID,Bensaber Djamel AmarORCID

Abstract

Recent developments in remote sensing technology have allowed us to observe the Earth with very high-resolution (VHR) images. VHR imagery scene classification is a challenging problem in the field of remote sensing. Vision transformer (ViT) models have achieved breakthrough results in image recognition tasks. However, transformer–encoder layers encode different levels of features, where the latest layer represents semantic information, in contrast to the earliest layers, which contain more detailed data but ignore the semantic information of an image scene. In this paper, a new deep framework is proposed for VHR scene understanding by exploring the strengths of ViT features in a simple and effective way. First, pre-trained ViT models are used to extract informative features from the original VHR image scene, where the transformer–encoder layers are used to generate the feature descriptors of the input images. Second, we merged the obtained features as one signal data set. Third, some extracted ViT features do not describe well the image scenes, such as agriculture, meadows, and beaches, which could negatively affect the performance of the classification model. To deal with this challenge, we propose a new algorithm for feature- and image selection. Indeed, this gives us the possibility of eliminating the less important features and images, as well as those that are abnormal; based on the similarity of preserving the whole data set, we selected the most informative features and important images by dropping the irrelevant images that degraded the classification accuracy. The proposed method was tested on three VHR benchmarks. The experimental results demonstrate that the proposed method outperforms other state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Modeling the shape of the scene: A holistic representation of the spatial envelope;Int. J. Comput. Vis.,2001

2. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns;IEEE Trans. Pattern Anal. Mach. Intell.,2002

3. Color indexing;Int. J. Comput. Vis.,1991

4. Lowe, D.G. (1999, January 20–27). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece.

5. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3