Abstract
Ground penetrating radar (GPR) has been extensively used in the routine inspection of reinforced concrete structures. However, the signatures in GPR images are reflected electromagnetic waves rather than their actual shapes. The interpretation of GPR data is a mandatory but time- and labor-consuming task. Furthermore, the rebars in the near-surface of concrete cause clutter in the GPR images, which hinders the interpretation of GPR data. This work presents a deep learning network to invert GPR B-scan images to permittivity maps of subsurface structures. The proposed network has a multi-path encoder which enables the network to leverage three kinds of GPR data: the original, migrated, and encoder–decoder-processed GPR data. Each type of processing method is designed to serve a different purpose: the original GPR images retain all the waveforms; the migration method intensifies the vertices of the subsurface anomalies; the encoder–decoder network suppresses rebar clutter and enhances the visibility of the defect echoes. The outputs of three processing methods are jointly used to interpret GPR B-scan images. We demonstrated the superiority of the proposed network by comparing it with a network with a single-path encoder. We also validated the proposed network with synthetic and experimental GPR data. The results indicate that the proposed network effectively reconstructs the defects in the reinforced concrete.
Funder
National Natural Science Foundation of China
Special Funds for Central Government Guidance to Local Governments for Science and Technology Development in Shenzhen
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献