A Multi-Path Encoder Network for GPR Data Inversion to Improve Defect Detection in Reinforced Concrete

Author:

Wang YuanzhengORCID,Qin HuiORCID,Miao Feng

Abstract

Ground penetrating radar (GPR) has been extensively used in the routine inspection of reinforced concrete structures. However, the signatures in GPR images are reflected electromagnetic waves rather than their actual shapes. The interpretation of GPR data is a mandatory but time- and labor-consuming task. Furthermore, the rebars in the near-surface of concrete cause clutter in the GPR images, which hinders the interpretation of GPR data. This work presents a deep learning network to invert GPR B-scan images to permittivity maps of subsurface structures. The proposed network has a multi-path encoder which enables the network to leverage three kinds of GPR data: the original, migrated, and encoder–decoder-processed GPR data. Each type of processing method is designed to serve a different purpose: the original GPR images retain all the waveforms; the migration method intensifies the vertices of the subsurface anomalies; the encoder–decoder network suppresses rebar clutter and enhances the visibility of the defect echoes. The outputs of three processing methods are jointly used to interpret GPR B-scan images. We demonstrated the superiority of the proposed network by comparing it with a network with a single-path encoder. We also validated the proposed network with synthetic and experimental GPR data. The results indicate that the proposed network effectively reconstructs the defects in the reinforced concrete.

Funder

National Natural Science Foundation of China

Special Funds for Central Government Guidance to Local Governments for Science and Technology Development in Shenzhen

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3