Characterizing Spatiotemporal Patterns of Snowfall in the Kaidu River Basin from 2000–2020 Using MODIS Observations

Author:

Wang JiangengORCID,Zhu LinglongORCID,Zhang YonghongORCID,Huang Wei,Song Kaida,Tian Feng

Abstract

Characterizing spatiotemporal patterns of snowfall is essential for understanding cryosphere responses to warming climate stress. The changes in snowfall and topographic controls in mountain regions still need to be clarified. This study proposes a general parsimonious methodology to obtain the frequency of snowfall in mountainous areas. The methodology employed is easily transferable to any other mountain region. Utilizing daily MODIS observations from June 2000 to May 2020 and the snowfall event detection algorithm, we monitored the frequency of snowfall in a long time series in the Kaidu river basin. The results are as follows: (1) The method for detecting the frequency of snowfall has high accuracy. The annual detected results agreed with surface observations, with an R2 of 0.65 and RMSE of 3.39. (2) The frequency of snowfall events increased monotonically with elevation. The influence of slope angle on snowfall gradually decreased with increasing elevation. (3) The frequency of snowfall events in the Kaidu river basin was dominated by an increasing trend. The trends showed a pronounced topographic dependence. This study reveals the distribution characteristics and changing snowfall trends in mountain regions. The results provide a reference for snowfall research in mountainous areas.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. The albedo of Earth;Stephens;Rev. Geophys.,2015

3. Snow–atmosphere coupling in the Northern Hemisphere;Henderson;Nat. Clim. Chang.,2018

4. Potential impacts of a warming climate on water availability in snow-dominated regions;Barnett;Nature,2005

5. Mountains of the world, water towers for humanity: Typology, mapping, and global significance;Viviroli;Water Resour. Res.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3