Identification and Counting of Sugarcane Seedlings in the Field Using Improved Faster R-CNN

Author:

Pan Yuyun,Zhu Nengzhi,Ding Lu,Li Xiuhua,Goh Hui-HwangORCID,Han Chao,Zhang Muqing

Abstract

Sugarcane seedling emergence is important for sugar production. Manual counting is time-consuming and hardly practicable for large-scale field planting. Unmanned aerial vehicles (UAVs) with fast acquisition speed and wide coverage are becoming increasingly popular in precision agriculture. We provide a method based on improved Faster RCNN for automatically detecting and counting sugarcane seedlings using aerial photography. The Sugarcane-Detector (SGN-D) uses ResNet 50 for feature extraction to produce high-resolution feature expressions and provides an attention method (SN-block) to focus the network on learning seedling feature channels. FPN aggregates multi-level features to tackle multi-scale problems, while optimizing anchor boxes for sugarcane size and quantity. To evaluate the efficacy and viability of the proposed technology, 238 images of sugarcane seedlings were taken from the air with an unmanned aerial vehicle. Outcoming with an average accuracy of 93.67%, our proposed method outperforms other commonly used detection models, including the original Faster R-CNN, SSD, and YOLO. In order to eliminate the error caused by repeated counting, we further propose a seedlings de-duplication algorithm. The highest counting accuracy reached 96.83%, whilst the mean absolute error (MAE) reached 4.6 when intersection of union (IoU) was 0.15. In addition, a software system was developed for the automatic identification and counting of cane seedlings. This work can provide accurate seedling data, thus can support farmers making proper cultivation management decision.

Funder

Science and Technology Major Project of Guangxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Sugar industry and improved sugarcane farming technologies in China;Sugar Tech,2016

2. Zhang, M., and Govindaraju, M. (2018). Sugarcane-Technology and Research, IntechOpen.

3. An Expert System for Diagnosing Sugarcane Diseases;Int. J. Acad. Eng. Res. (IJAER),2019

4. The impact of climate change and climate extremes on sugarcane production;GCB Bioenergy,2021

5. Bhatt, R. (2020). Resources Use Efficiency in Agriculture, Springer.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3