Preflight Evaluation of the Environmental Trace Gases Monitoring Instrument with Nadir and Limb Modes (EMI-NL) Based on Measurements of Standard NO2 Sample Gas

Author:

Yang TaipingORCID,Si Fuqi,Zhou Haijin,Zhao MinjieORCID,Lin Fang,Zhu Lei

Abstract

Hyperspectral observations are used to retrieve high-resolution horizontal distribution and vertical profiles of trace gases (O3, NO2, HCHO, and SO2), thereby playing a vital role in monitoring the spatio-temporal distribution and transportation of atmospheric pollutants. These observations reflect air quality changes on global and regional scales, including China, thereby elucidating the impacts of anthropogenic and natural emissions on atmospheric composition and global climate change. The DaQi 02 (DQ02) satellite carries the Environmental Trace Gases Monitoring Instrument with Nadir and Limb modes (EMI-NL) onboard, which will simultaneously perform nadir and limb measurements of high-resolution ultraviolet and visible solar scattered light in the nadir and limb directions. Combined with the absorption of different trace gases in this wavelength band, this information can provide high-resolution horizontal and vertical distributions of trace gases. We examined the spectral measuring ability and instrument characteristics of both modules of EMI-NL by measuring different light sources and concentrations of the NO2 sample gas. In the nadir module test, when the NO2 sample gas concentration was 198 ppm and 513 ppm with scattered sunlight as the light source, the average relative errors of spatial pixels were 4.02% and 3.64%, respectively. At the NO2 sample gas concentration of 198 ppm with the integrating sphere as the light source, the average relative error of spatial pixels was −2.26%. In the limb module test, when the NO2 sample gas concentration was 198 ppm and 1000 ppm with the tungsten halogen lamp as the light source, the average relative errors of spatial pixels were −3.07% and 8.32%, respectively. When the NO2 sample gas concentration was 198 ppm and 1000 ppm with the integrating sphere as the light source, the spatial pixel average errors were −3.5% and 8.06%, respectively. The retrieved NO2 slant column density between different spatial pixels exhibited notable inconsistency in both modules, which could be used to estimate the stripe of spatial dimension. These results confirm the ability of EMI-NL to provide accurate spaceborne monitoring of NO2 globally.

Funder

National Natural Science Foundation of China

the CASHIPS Director’s Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G;Heath;Opt. Eng.,1975

2. The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results;Burrows;J. Atmos. Sci.,1999

3. SCIAMACHY: Mission objectives and measurement modes;Bovensmann;J. Atmos. Sci.,1999

4. The Ozone Monitoring Instrument;Levelt;IEEE Trans. Geosci. Remote Sens.,2006

5. GOME-2—Metop’s second-generation sensor for operational ozone monitoring;Callies;ESA Bull.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3