Micro-Grinding Parameter Control of Hard and Brittle Materials Based on Kinematic Analysis of Material Removal

Author:

Manea Hisham1,Lu Hong1ORCID,Liu Qi1ORCID,Xiao Junbiao1,Yang Kefan1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

This article explores the intricacies of micro-grinding parameter control for hard and brittle materials, with a specific focus on Zirconia ceramics (ZrO2) and Optical Glass (BK7). Given the increasing demand and application of these materials in various high-precision industries, this study aims to provide a comprehensive kinematic analysis of material removal during the micro-grinding process. According to the grinding parameters selected to be analyzed in this study, the ac-max values are between (9.55 nm ~ 67.58 nm). Theoretical modeling of the grinding force considering the brittle and ductile removal phase, frictional effects, the possibility of grit to cut materials, and grinding conditions is very important in order to control and optimize the surface grinding process. This research introduces novel models for predicting and optimizing micro-grinding forces effectively. The primary objective is to establish a micro-grinding force model that facilitates the easy manipulation of micro-grinding parameters, thereby optimizing the machining process for these challenging materials. Through experimental investigations conducted on Zirconia ceramics, the paper evaluates a mathematical model of the grinding force, highlighting its significance in predicting and controlling the forces involved in micro-grinding. The suggested model underwent thorough testing to assess its validity, revealing an accuracy with average variances of 6.616% for the normal force and 5.752% for the tangential force. Additionally, the study delves into the coefficient of friction within the grinding process, suggesting a novel frictional force model. This model is assessed through a series of experiments on Optical Glass BK7, aiming to accurately characterize the frictional forces at play during grinding. The empirical results obtained from both sets of experiments—on Zirconia ceramics and Optical Glass BK7—substantiate the efficacy of the proposed models. These findings confirm the models’ capability to accurately describe the force dynamics in the micro-grinding of hard and brittle materials. The research not only contributes to the theoretical understanding of micro-grinding processes but also offers practical insights for enhancing the efficiency and effectiveness of machining operations involving hard and brittle materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3