Vehicle Collaborative Partial Offloading Strategy in Vehicular Edge Computing

Author:

Chen Ruoyu12ORCID,Fan Yanfang2ORCID,Yuan Shuang2ORCID,Hao Yanbo2ORCID

Affiliation:

1. Institute of Intelligent Information Processing, Beijing Information Science and Technology University, Beijing 100192, China

2. Computer School, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

Vehicular Edge Computing (VEC) is a crucial application of Mobile Edge Computing (MEC) in vehicular networks. In VEC networks, the computation tasks of vehicle terminals (VTs) can be offloaded to nearby MEC servers, overcoming the limitations of VTs’ processing power and reducing latency caused by distant cloud communication. However, a mismatch between VTs’ demanding tasks and MEC servers’ limited resources can overload MEC servers, impacting Quality of Service (QoS) for computationally intensive tasks. Additionally, vehicle mobility can disrupt communication with static MEC servers, further affecting VTs’ QoS. To address these challenges, this paper proposes a vehicle collaborative partial computation offloading model. This model allows VTs to offload tasks to two types of service nodes: collaborative vehicles and MEC servers. Factors like a vehicle’s mobility, remaining battery power, and available computational power are also considered when evaluating its suitability for collaborative offloading. Furthermore, we design a deep reinforcement learning-based strategy for collaborative partial computation offloading that minimizes overall task delay while meeting individual latency constraints. Experimental results demonstrate that compared to traditional approaches without vehicle collaboration, this scheme significantly reduces latency and achieves a significant reduction (around 2%) in the failure rate under tighter latency constraints.

Funder

Qin Xin Talents Cultivation Program, Beijing Information Science & Technology University

College Students’ Innovation and Entrepreneurship Training Program, Beijing Information Science & Technology University, Computer School

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3