Advanced Computational Framework to Analyze the Stability of Non-Newtonian Fluid Flow through a Wedge with Non-Linear Thermal Radiation and Chemical Reactions

Author:

Khan Muhammad Imran1,Zeeshan Ahmad1ORCID,Ellahi Rahmat12ORCID,Bhatti Muhammad Mubashir3ORCID

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan

2. Center for Modeling & Computer Simulation, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

3. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The main idea of this investigation is to introduce an integrated intelligence approach that investigates the chemically reacting flow of non-Newtonian fluid with a backpropagation neural network (LMS-BPNN). The AI-based LMS-BPNN approach is utilized to obtain the optimal solution of an MHD flow of Eyring–Powell over a porous shrinking wedge with a heat source and nonlinear thermal radiation (Rd). The partial differential equations (PDEs) that define flow problems are transformed into a system of ordinary differential equations (ODEs) through efficient similarity variables. The reference solution is obtained with the bvp4c function by changing parameters as displayed in Scenarios 1–7. The label data are divided into three portions, i.e., 80% for training, 10% for testing, and 10% for validation. The label data are used to obtain the approximate solution using the activation function in LMS-BPNN within the MATLAB built-in command ‘nftool’. The consistency and uniformity of LMS-BPNN are supported by fitness curves based on the MSE, correlation index (R), regression analysis, and function fit. The best validation performance of LMS-BPNN is obtained at 462, 369, 642, 542, 215, 209, and 286 epochs with MSE values of 8.67 × 10−10, 1.64 × 10−9, 1.03 × 10−9, 302 9.35 × 10−10, 8.56 × 10−10, 1.08 × 10−9, and 6.97 × 10−10, respectively. It is noted that f′(η), θ(η), and ϕ(η) satisfy the boundary conditions asymptotically for Scenarios 1–7 with LMS-BPNN. The dual solutions for flow performance outcomes (Cfx, Nux, and Shx) are investigated with LMS-BPNN. It is concluded that when the magnetohydrodynamics increase (M=0.01, 0.05, 0.1), then the solution bifurcates at different critical values, i.e., λc=−1.06329,−1.097,−1.17694. The stability analysis is conducted using an LMS-BPNN approximation, involving the computation of eigenvalues for the flow problem. The deduction drawn is that the upper (first) branch solution remains stable, while the lower branch solution causes a disturbance in the flow and leads to instability. It is observed that the boundary layer thickness for the lower branch (second) solution is greater than the first solution. A comparison of numerical results and predicted solutions with LMS-BPNN is provided and they are found to be in good agreement.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3