Streamlining Ocean Dynamics Modeling with Fourier Neural Operators: A Multiobjective Hyperparameter and Architecture Optimization Approach

Author:

Sun Yixuan1ORCID,Sowunmi Ololade2,Egele Romain13ORCID,Narayanan Sri Hari Krishna1ORCID,Van Roekel Luke4ORCID,Balaprakash Prasanna5ORCID

Affiliation:

1. Argonne National Laboratory, Lemont, IL 60439, USA

2. Department of Mathematics, Florida State University, Tallahassee, FL 32304, USA

3. Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

4. Los Alamos National Laboratory, Los Alamos, NM 87545, USA

5. Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract

Training an effective deep learning model to learn ocean processes involves careful choices of various hyperparameters. We leverage DeepHyper’s advanced search algorithms for multiobjective optimization, streamlining the development of neural networks tailored for ocean modeling. The focus is on optimizing Fourier neural operators (FNOs), a data-driven model capable of simulating complex ocean behaviors. Selecting the correct model and tuning the hyperparameters are challenging tasks, requiring much effort to ensure model accuracy. DeepHyper allows efficient exploration of hyperparameters associated with data preprocessing, FNO architecture-related hyperparameters, and various model training strategies. We aim to obtain an optimal set of hyperparameters leading to the most performant model. Moreover, on top of the commonly used mean squared error for model training, we propose adopting the negative anomaly correlation coefficient as the additional loss term to improve model performance and investigate the potential trade-off between the two terms. The numerical experiments show that the optimal set of hyperparameters enhanced model performance in single timestepping forecasting and greatly exceeded the baseline configuration in the autoregressive rollout for long-horizon forecasting up to 30 days. Utilizing DeepHyper, we demonstrate an approach to enhance the use of FNO in ocean dynamics forecasting, offering a scalable solution with improved precision.

Funder

Argonne Leadership Computing Facility at Argonne National Laboratory

U.S. Department of Energy

Publisher

MDPI AG

Reference51 articles.

1. Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., Mahesh, A., Matheson, M., Deslippe, J., and Fatica, M. (2018, January 11–16). Exascale deep learning for climate analytics. Proceedings of the SC18: International Conference for High Performance Computing, Computing, Networking, Storage and Analysis, Dallas, TX, USA.

2. Deep learning to represent subgrid processes in climate models;Rasp;Proc. Natl. Acad. Sci. USA,2018

3. Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J.K., and Grover, A. (2023). ClimaX: A foundation model for weather and climate. arXiv.

4. Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts;Gibson;Commun. Earth Environ.,2021

5. Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., and Azizzadenesheli, K. (2022). FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3