CC-DETR: DETR with Hybrid Context and Multi-Scale Coordinate Convolution for Crowd Counting

Author:

Gu Yanhong12,Zhang Tao12ORCID,Hu Yuxia3,Nian Fudong123ORCID

Affiliation:

1. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China

2. Anhui Provincial Engineering Technology Research Center of Intelligent Vehicle Control and Integrated Design Technology, Hefei 230601, China

3. Anhui International Joint Research Center for Ancient Architecture Intellisencing and Multi-Dimensional Modeling, Anhui Jianzhu University, Hefei 230601, China

Abstract

Prevailing crowd counting approaches primarily rely on density map regression methods. Despite wonderful progress, significant scale variations and complex background interference within the same image remain challenges. To address these issues, in this paper we propose a novel DETR-based crowd counting framework called Crowd Counting DETR (CC-DETR), which aims to extend the state-of-the-art DETR object detection framework to the crowd counting task. In CC-DETR, a DETR-like encoder–decoder structure (Hybrid Context DETR, i.e., HCDETR) is proposed to tackle complex visual information by fusing features from hybrid semantic levels through a transformer. In addition, we design a Coordinate Dilated Convolution Module (CDCM) to effectively employ position-sensitive context information in different scales. Extensive experiments on three challenging crowd counting datasets (ShanghaiTech, UCF-QNRF, and NWPU) demonstrate that our model is effective and competitive when compared against SOTA crowd counting models.

Funder

Anhui Provincial Key Research and Development Program

Natural Science Research Project of Anhui Educational Committee

Anhui International Joint Research Center for Ancient Architecture Intellisencing and Multi-Dimensional Modeling

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3