MSGC-YOLO: An Improved Lightweight Traffic Sign Detection Model under Snow Conditions

Author:

Chen Baoxiang1,Fan Xinwei1

Affiliation:

1. College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou 310018, China

Abstract

Traffic sign recognition plays a crucial role in enhancing the safety and efficiency of traffic systems. However, in snowy conditions, traffic signs are often obscured by particles, leading to a severe decrease in detection accuracy. To address this challenge, we propose an improved YOLOv8-based model for traffic sign recognition. Initially, we introduce a Multi-Scale Group Convolution (MSGC) module to replace the C2f module in the YOLOv8 backbone. Data indicate that MSGC enhances detection accuracy while maintaining model lightweightness. Subsequently, to improve the recognition ability for small targets, we introduce an enhanced small target detection layer, which enhances small target detection accuracy while reducing parameters. In addition, we replaced the original BCE loss with the improved EfficientSlide loss to improve the sample imbalance problem. Finally, we integrate Deformable Attention into the model to improve the detection efficiency and performance of complex targets. The resulting fused model, named MSGC-YOLOv8, is evaluated on an enhanced dataset of snow-covered traffic signs. Experimental results show that the MSGC-YOLOv8 model is used for snow road traffic sign recognition. Compared with the YOLOv8n model mAP@0.5:0.95, mAP@0.5:0.95 is increased by 17.7% and 18.1%, respectively, greatly improving the detection accuracy. Compared with the YOLOv8s model, while the parameters are reduced by 59.6%, mAP@0.5 only loses 1.5%. Considering all aspects of the data, our proposed model shows high detection efficiency and accuracy under snowy conditions.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3