AMSMC-UGAN: Adaptive Multi-Scale Multi-Color Space Underwater Image Enhancement with GAN-Physics Fusion

Author:

Chao Dong123,Li Zhenming4,Zhu Wenbo4ORCID,Li Haibing4,Zheng Bing123,Zhang Zhongbo4,Fu Weijie4

Affiliation:

1. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

2. South China Sea Marine Survey Center, Ministry of Natural Resources of the People’s Republic of China, Guangzhou 510300, China

3. Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources of the People’s Republic of China, Guangzhou 510300, China

4. College of Mechanical Engineering and Automation, Foshan University, Foshan 528200, China

Abstract

Underwater vision technology is crucial for marine exploration, aquaculture, and environmental monitoring. However, the challenging underwater conditions, including light attenuation, color distortion, reduced contrast, and blurring, pose difficulties. Current deep learning models and traditional image enhancement techniques are limited in addressing these challenges, making it challenging to acquire high-quality underwater image signals. To overcome these limitations, this study proposes an approach called adaptive multi-scale multi-color space underwater image enhancement with GAN-physics fusion (AMSMC-UGAN). AMSMC-UGAN leverages multiple color spaces (RGB, HSV, and Lab) for feature extraction, compensating for RGB’s limitations in underwater environments and enhancing the use of image information. By integrating a membership degree function to guide deep learning based on physical models, the model’s performance is improved across different underwater scenes. In addition, the introduction of a multi-scale feature extraction module deepens the granularity of image information, learns the degradation distribution of different image information of the same image content more comprehensively, and provides useful guidance for more comprehensive data for image enhancement. AMSMC-UGAN achieved maximum scores of 26.04 dB, 0.87, and 3.2004 for PSNR, SSIM, and UIQM metrics, respectively, on real and synthetic underwater image datasets. Additionally, it obtained gains of at least 6.5%, 6%, and 1% for these metrics. Empirical evaluations on real and artificially distorted underwater image datasets demonstrate that AMSMC-GAN outperforms existing techniques, showcasing superior performance with enhanced quantitative metrics and strong generalization capabilities.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3