Quadratic Tracking Control of Linear Stochastic Systems with Unknown Dynamics Using Average Off-Policy Q-Learning Method

Author:

Hao Longyan1ORCID,Wang Chaoli1,Shi Yibo1

Affiliation:

1. Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

This article investigates the optimal tracking control problem for data-based stochastic discrete-time linear systems. An average off-policy Q-learning algorithm is proposed to solve the optimal control problem with random disturbances. Compared with the existing off-policy reinforcement learning (RL) algorithm, the proposed average off-policy Q-learning algorithm avoids the assumption of an initial stability control. First, a pole placement strategy is used to design an initial stable control for systems with unknown dynamics. Second, the initial stable control is used to design a data-based average off-policy Q-learning algorithm. Then, this algorithm is used to solve the stochastic linear quadratic tracking (LQT) problem, and a convergence proof of the algorithm is provided. Finally, numerical examples show that this algorithm outperforms other algorithms in a simulation.

Funder

National Natural Science Foundation of China under grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3