Author:
Li Hongbo,Han Guomin,Yang Jingbo,Li Nong,Zhang Jie
Abstract
Based on unsteady airflow excitation and elastic thin strip vibration theory, a SI-FLAT flatness meter was taken as the research object, and an amplitude–residual stress simulation analysis model of the cold rolling strip under aerodynamic loads was established by using ANSYS Workbench. First, the influences of fluid–structure interaction on the strip amplitude distribution and the flatness calculation deviation were analyzed. It was found that the analysis with fluid–structure interaction matched the actual measurement of the flatness meter better. Then, the influences of different aerodynamic loads and tensions on the strip midpoint amplitude and the flatness calculation deviation were analyzed. It was found that when alternating aerodynamic loads increased, the strip amplitude increased in the form of a quadratic polynomial. However, when the tensions decreased, the strip amplitude decreased exponentially. The strip dimensions also influenced the amplitude of vibration: The wider and thinner the strip, the larger the amplitude. Finally, the influences of different flatness defects on the strip amplitude distribution and the flatness calculation deviation were analyzed. The deviation was serious on the strip edge, and the fluctuation characteristics of the deviation were opposite to those of the initial flatness defects.
Funder
the Fundamental Research Funds For the central Universities
Subject
General Materials Science,Metals and Alloys
Reference14 articles.
1. Strip non-contact flatness detection principle and its detection system;Yang;Metall. Ind. Autom.,2009
2. SI-FLAT contactless flatness measurement for cold rolling mills and processing lines
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献