Dual-Polarization Ambient Backscatter Communications and Signal Detection

Author:

Yang Youze1ORCID,Yan Sen1ORCID

Affiliation:

1. School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Ambient backscatter communication (AmBC), an emerging mechanism for batteryless communications that can utilize ambient radio-frequency signals to modulate information and thus reduce power consumption, has attracted considerable attention and has been considered as a critical technology in green “Internet of Things” sensor networks due to its ultra-low power consumption. This paper presents the first a complete dual-polarization AmBC (DPAm) system model, which can extend AmBC into polarization diversity and improve the data-transmission rate of backscatter symbols. We proposed two scenarios: direct dual-polarization-based DPAm node structures and polarization-conversion-based DPAm node structures. In addition, we consider a parallel backscatter mode with differential coding and develop corresponding detectors, which also give the analytical detection thresholds. Moreover, we consider a simultaneous backscatter mode with Manchester coding in order to avoid complex-parameter estimation. To address the power imbalance problem of the DPAm system that arises because the polarization deflection angle would cause the power level to change with different polarization patterns, we also develop a power-average detector and a clustering detector. Simulation results show the throughput performance on each DPAm node structure with each detector, demonstrating the feasibility and efficiency of the proposed DPAm nodes and detectors. Compared with single-polarization AmBC (SPAm), the proposed DPAm node can achieve higher throughput in most cases. Finally, the clustering detector is shown to be more robust to short training sequences and complex environments.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3