Impact of Nutrients, Temperatures, and a Heat Wave on Zooplankton Community Structure: An Experimental Approach

Author:

Işkın Uğur,Filiz Nur,Cao YuORCID,Neif Érika M.ORCID,Öğlü BurakORCID,Lauridsen Torben L.,Davidson Thomas A.ORCID,Søndergaard MartinORCID,Tavşanoğlu Ülkü Nihan,Beklioğlu Meryem,Jeppesen ErikORCID

Abstract

Shallow lakes are globally the most numerous water bodies and are sensitive to external perturbations, including eutrophication and climate change, which threaten their functioning. Extreme events, such as heat waves (HWs), are expected to become more frequent with global warming. To elucidate the effects of nutrients, warming, and HWs on zooplankton community structure, we conducted an experiment in 24 flow-through mesocosms (1.9 m in diameter, 1.0 m deep) imitating shallow lakes. The mesocosms have two nutrient levels (high (HN) and low (LN)) crossed with three temperature scenarios based on the Intergovernmental Panel on Climate Change (IPCC) projections of likely warming scenarios (unheated, A2, and A2 + 50%). The mesocosms had been running continuously with these treatments for 11 years prior to the HW simulation, which consisted of an additional 5 °C increase in temperature applied from 1 July to 1 August 2014. The results showed that nutrient effects on the zooplankton community composition and abundance were greater than temperature effects for the period before, during, and after the HW. Before the HW, taxon richness was higher, and functional group diversity and evenness were lower in HN than in LN. We also found a lower biomass of large Cladocera and a lower zooplankton: phytoplankton ratio, indicating higher fish predation in HN than in LN. Concerning the temperature treatment, we found some indication of higher fish predation with warming in LN, but no clear effects in HN. There was a positive nutrient and warming interaction for the biomass of total zooplankton, large and small Copepoda, and the zooplankton: phytoplankton ratio during the HW, which was attributed to recorded HW-induced fish kill. The pattern after the HW largely followed the HW response. Our results suggest a strong nutrient effect on zooplankton, while the effect of temperature treatment and the 5 °C HW was comparatively modest, and the changes likely largely reflected changes in predation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3