Abstract
(1) Background: Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is an intractable problem for many clinical oncologists. The mechanisms of resistance to EGFR-TKIs are complex. Long non-coding RNAs (lncRNAs) may play an important role in cancer development and metastasis. However, the biological process between lncRNAs and drug resistance to EGFR-mutated lung cancer remains largely unknown. (2) Methods: Osimertinib- and afatinib-resistant EGFR-mutated lung cancer cells were established using a stepwise method. A microarray analysis of non-coding and coding RNAs was performed using parental and resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells and evaluated by bioinformatics analysis through medical-industrial collaboration. (3) Results: Colorectal neoplasia differentially expressed (CRNDE) and DiGeorge syndrome critical region gene 5 (DGCR5) lncRNAs were highly expressed in EGFR-TKI-resistant cells by microarray analysis. RNA-protein binding analysis revealed eukaryotic translation initiation factor 4A3 (eIF4A3) bound in an overlapping manner to CRNDE and DGCR5. The CRNDE downregulates the expression of eIF4A3, mucin 1 (MUC1), and phospho-EGFR. Inhibition of CRNDE activated the eIF4A3/MUC1/EGFR signaling pathway and apoptotic activity, and restored sensitivity to EGFR-TKIs. (4) Conclusions: The results showed that CRNDE is associated with the development of resistance to EGFR-TKIs. CRNDE may be a novel therapeutic target to conquer EGFR-mutant NSCLC.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献