Abstract
Alzheimer’s disease (AD) is a complex multifactorial disorder, mainly characterized by the progressive loss of memory and cognitive, motor, and functional capacity. The absence of effective therapies available for AD alongside the consecutive failures in the central nervous system (CNS) drug development has been motivating the search for new disease-modifying therapeutic strategies for this disease. To address this issue, the multitarget directed ligands (MTDLs) are emerging as a therapeutic alternative to target the multiple AD-related factors. Following this concept, herein we describe the design, synthesis, and biological evaluation of a family of chromeno[3,4-b]xanthones as well as their (E)-2-[2-(propargyloxy)styryl]chromone precursors, as first-in-class acetylcholinesterase (AChE) and β-amyloid (Aβ) aggregation dual-inhibitors. Compounds 4b and 10 emerged as well-balanced dual-target inhibitors, with IC50 values of 3.9 and 2.9 μM for AChE and inhibitory percentages of 70 and 66% for Aβ aggregation, respectively. The molecular docking showed that most of the compounds bound to AChE through hydrogen bonds with residues of the catalytic triad and π-stacking interactions between the main scaffold and the aromatic residues present in the binding pocket. The interesting well-balanced activities of these compounds makes them interesting templates for the development of new multitarget compounds for AD.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献