TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis

Author:

Lakhssassi Naoufal,Zhou Zhou,Cullen Mallory A.,Badad Oussama,El Baze Abdelhalim,Chetto Oumaima,Embaby Mohamed G.,Knizia Dounya,Liu Shiming,Neves Leandro G.,Meksem KhalidORCID

Abstract

Reverse genetic approaches have been widely applied to study gene function in crop species; however, these techniques, including gel-based TILLING, present low efficiency to characterize genes in soybeans due to genome complexity, gene duplication, and the presence of multiple gene family members that share high homology in their DNA sequence. Chemical mutagenesis emerges as a genetically modified-free strategy to produce large-scale soybean mutants for economically important traits improvement. The current study uses an optimized high-throughput TILLING by target capture sequencing technology, or TILLING-by-Sequencing+ (TbyS+), coupled with universal bioinformatic tools to identify population-wide mutations in soybeans. Four ethyl methanesulfonate mutagenized populations (4032 mutant families) have been screened for the presence of induced mutations in targeted genes. The mutation types and effects have been characterized for a total of 138 soybean genes involved in soybean seed composition, disease resistance, and many other quality traits. To test the efficiency of TbyS+ in complex genomes, we used soybeans as a model with a focus on three desaturase gene families, GmSACPD, GmFAD2, and GmFAD3, that are involved in the soybean fatty acid biosynthesis pathway. We successfully isolated mutants from all the six gene family members. Unsurprisingly, most of the characterized mutants showed significant changes either in their stearic, oleic, or linolenic acids. By using TbyS+, we discovered novel sources of soybean oil traits, including high saturated and monosaturated fatty acids in addition to low polyunsaturated fatty acid contents. This technology provides an unprecedented platform for highly effective screening of polyploid mutant populations and functional gene analysis. The obtained soybean mutants from this study can be used in subsequent soybean breeding programs for improved oil composition traits.

Funder

United Soybean Board

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference86 articles.

1. A Reference Guide to Soybean Facts and Figures http://soystats.com/2018-soystats/

2. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content

3. Genetics and breeding for modified fatty acid profile in soybean seed oil;Lee;J. Crop. Sci. Biotech.,2007

4. Lipid Biosynthesis

5. Seed composition;Wilson,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3