Abstract
Huntington’s disease (HD) is a progressive and fatal autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the first exon of the huntingtin gene (HTT). In spite of considerable efforts, there is currently no treatment to stop or delay the disease. Although HTT is expressed ubiquitously, most of our knowledge has been obtained on neurons. More recently, the impact of mutant huntingtin (mHTT) on other cell types, including glial cells, has received growing interest. It is currently unclear whether new pathological pathways could be identified in these cells compared to neurons. To address this question, we performed an in vivo screen for modifiers of mutant huntingtin (HTT-548-128Q) induced pathology in Drosophila adult glial cells and identified several putative therapeutic targets. Among them, we discovered that partial nej/dCBP depletion in these cells was protective, as revealed by strongly increased lifespan and restored locomotor activity. Thus, dCBP promotes the HD pathology in glial cells, in contrast to previous opposite findings in neurons. Further investigations implicated the transcriptional activator Foxo as a critical downstream player in this glial protective pathway. Our data suggest that combinatorial approaches combined to specific tissue targeting may be required to uncover efficient therapies in HD.
Funder
Seventh Framework Programme
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献