Abstract
Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献