The Characterization of a Subependymal Giant Astrocytoma-Like Cell Line from Murine Astrocyte with mTORC1 Hyperactivation

Author:

Tang Xin,Angst Gabrielle,Haas Michael,Yang Fuchun,Wang Chenran

Abstract

Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in TSC1 (hamartin) or TSC2 (tuberin), crucial negative regulators of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. TSC affects multiple organs including the brain. The neurologic manifestation is characterized by cortical tubers, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA) in brain. SEGAs may result in hydrocephalus in TSC patients and mTORC1 inhibitors are the current recommended therapy for SEGA. Nevertheless, a major limitation in the research for SEGA is the lack of cell lines or animal models for mechanistic investigations and development of novel therapy. In this study, we generated TSC1-deficient neural cells from spontaneously immortalized mouse astrocytes in an attempt to mimic human SEGA. The TSC1-deficient cells exhibit mTORC1 hyperactivation and characteristics of transition from astrocytes to neural stem/progenitor cell phenotypes. Rapamycin efficiently decreased mTORC1 activity of these TSC1-deficient cells in vitro. In vivo, TSC1-deficient cells could form SEGA-like tumors and Rapamycin treatment decreased tumor growth. Collectively, our study generates a novel SEGA-like cell line that is invaluable for studying mTORC1-driven molecular and pathological alterations in neurologic tissue. These SEGA-like cells also provide opportunities for the development of novel therapeutic strategy for TSC patients with SEGA.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. mTOR Signaling: Recent Progress;International Journal of Molecular Sciences;2024-02-23

2. Functional Analysis of a Novel Immortalized Murine Microglia Cell Line in 3D Spheroid Model;Neurochemical Research;2023-05-17

3. mTOR Signaling Network in Cell Biology and Human Disease;International Journal of Molecular Sciences;2022-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3