Abstract
Side weirs are important structural measures extensively used, for instance, for regulating water levels in rivers and canals. If the length of the opening is limited, the amount of water diverted out of the channel and the effective length can be increased by applying a labyrinth side weir. The present study deals with numerical simulations regarding the hydraulic performance of a labyrinth side weir with a triangular plan in single-cycle mode. Specifically, six different types of antivortexes embedded inside it and in various hydraulic conditions at different Froude numbers are analyzed. The antivortexes are studied using two groups, permeable and impermeable, with three different heights: 0.5 P, 0.75 P, and 1 P (P: Weir height). The comparison of the simulated water surface profiles with laboratory results shows that the numerical model is able to capture the flow characteristics on the labyrinth side weir. The use of an antivortex in a triangular labyrinth side weir reduces the secondary flows due to the interaction with the transverse vortexes of the vertical axis and increases the discharge capacity by 11%. Antivortexes in a permeable state outperform those in an impermeable state; the discharge coefficient in the permeable state increases up to 3% with respect to the impermeable state. Finally, based on an examination of the best type of antivortex, taking into account shape, permeability, and height, the discharge coefficient increases to 13.4% compared to a conventional labyrinth side weir.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献