Parameterization of NSGA-II for the Optimal Design of Water Distribution Systems

Author:

Wang QiORCID,Wang Libing,Huang Wen,Wang Zhihong,Liu ShumingORCID,Savić Dragan A.ORCID

Abstract

The optimal design of Water Distribution Systems (WDSs) using multi-objective evolutionary algorithms (MOEAs) has received substantial attention in the past two decades. Many MOEAs have been proposed and applied successfully to this challenging problem. However, these tools are primarily considered black-boxes by end users, especially when the algorithm parameterization issues are taken into consideration. This paper presents a simple yet effective method for capturing the interrelationships among the five key parameters of the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which is one of the state-of-the-art MOEAs in this field. Two representative boundary values for each parameter are selected from a reasonable range, and all the possible combinations are tested on three benchmark design problems. Those benchmarks are based on two widely used small networks and a larger, real-world irrigation network. Results suggest that there is a hierarchy of impacts imposed by the five parameters of NSGA-II. The population size turns out to be the most important one, which implies that NSGA-II is sensitive to the initial population, especially for complex problems. A relatively large population size increases the diversity of a population; hence some key genes may be identified at the beginning (or early stage) of search. Furthermore, it transpires that the distribution indices of crossover and mutation have a more significant impact than their probabilities, where the former are generally overlooked by previous studies. Some useful guidelines are also provided, which can improve the efficacy of NSGA-II and increase the chance of identifying near-optimal solutions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3